1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
| import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import OneCycleLR from torchtext.datasets import IMDB from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator from torch.utils.data import DataLoader, Dataset import matplotlib.pyplot as plt import numpy as np
tokenizer = get_tokenizer("spacy", language="en_core_web_sm")
def collect_tokens(data_iter): """ :param data_iter: IMDB数据集 :return: 返回单词列表 """ all_tokens = [] for _, text in data_iter: tokens = tokenizer(text) all_tokens.append(tokens) return all_tokens
train_iter = IMDB(split="train") test_iter = IMDB(split="test")
vocab = build_vocab_from_iterator(collect_tokens(train_iter), max_tokens=20000, specials=["<pad>", "<unk>"]) vocab.set_default_index(vocab["<unk>"])
def text_pipeline(text): """ :param text: 欲处理的文本列表 :return: 文本对应的索引列表 """ tokens = tokenizer(text) max_length = 100 tokens = tokens[:max_length] index = [] for token in tokens: index.append(vocab[token]) return index
def label_pipeline(label): """ :param label: 情感标签 pos 或 neg :return: 将 pos 或 neg 映射为 1 或 0 """ return 1 if label == "pos" else 0
class IMDBDataset(Dataset): """自定义 IMDB 数据集类,用于加载 IMDB 电影评论数据""" def __init__(self, data_iter): """ 初始化 :param data_iter: 同时包含 (label,text) 的数据迭代器 """ self.data = [] for label, text in data_iter: self.data.append((text_pipeline(text), label_pipeline(label)))
def __len__(self): """ :return: 返回数据集 self.data 长度 """ return len(self.data)
def __getitem__(self, idx): """ :param idx: 索引 :return: 索引对应的单词 """ return self.data[idx]
train_data = IMDBDataset(train_iter) test_data = IMDBDataset(test_iter)
def collate_fn(batch): """ 处理批量数据,对文本进行填充使其长度一致 :param batch: 批量数据 :return: 填充处理之后的结果 """ texts, labels = zip(*batch)
lengths = [] for text in texts: lengths.append(len(text))
max_len = max(lengths)
padded_texts = [] for text in texts: padded_texts.append(text + [vocab["<pad>"]] * (max_len - len(text)))
return torch.tensor(padded_texts), torch.tensor(labels, dtype=torch.float)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_loader = DataLoader(train_data, batch_size=64, shuffle=True, collate_fn=collate_fn) test_loader = DataLoader(test_data, batch_size=64, shuffle=False, collate_fn=collate_fn)
class PositionalEncoding(nn.Module): """ 定义位置编码类,为 Transformer 提供位置信息 """ def __init__(self, d_model, dropout): """ :param d_model: 词向量的维度 :param dropout: Dropout 的概率,用于防止过拟合。 """ super().__init__() self.dropout = nn.Dropout(p=dropout)
max_len = 5000 position_code = torch.zeros(max_len, d_model)
position_item = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
position_code[:, 0::2] = torch.sin(position_item * div_term) position_code[:, 1::2] = torch.cos(position_item * div_term)
self.register_buffer('position_code', position_code)
def forward(self, x): """ 前向传播 :param x: 输入张量 (batch_size, seq_len, d_model) :return: 添加位置编码之后的张量 """ x = x + self.position_code[:x.size(1)] return self.dropout(x)
class TransformerClassifier(nn.Module): """ 定义 Transformer 分类模型 """ def __init__(self, vocab_size, embed_dim, num_heads, num_layers, hidden_dim, dropout): """ 初始化 :param vocab_size: 词汇表的大小 :param embed_dim: 词嵌入的维度 :param num_heads: Multi-Head 的头数 :param num_layers: Encoder 的层数 :param hidden_dim: FNN的隐藏层维度 :param dropout: dropout 率 """ super().__init__()
self.embedding = nn.Embedding(vocab_size, embed_dim) self.pos_encoder = PositionalEncoding(embed_dim, dropout)
encoder_layers = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, dim_feedforward=hidden_dim, dropout=dropout)
self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers) self.fc = nn.Linear(embed_dim, 1) self.dropout = nn.Dropout(dropout)
def forward(self, text): """ 前向传播,完成计算流程 :param text: 输入的文本张量 形状为 (batch_size, seq_len) :return:分类结果,形状为 (batch_size) """ embedded = self.embedding(text) embedded = self.dropout(embedded)
embedded = self.pos_encoder(embedded)
embedded = embedded.transpose(0, 1)
output = self.transformer_encoder(embedded) output = output.mean(dim=0)
return self.fc(output).squeeze(1)
embed_dim = 512 num_heads = 4 num_layers = 4 hidden_dim = 512 dropout = 0.2 epochs = 10
model = TransformerClassifier( vocab_size=len(vocab), embed_dim=embed_dim, num_heads=num_heads, num_layers=num_layers, hidden_dim=hidden_dim, dropout=dropout ).to(device)
optimizer = optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-2) scheduler = OneCycleLR( optimizer, max_lr=1e-4, total_steps=epochs * len(train_loader), pct_start=0.3, anneal_strategy='cos', div_factor=10, final_div_factor=100 )
criterion = nn.BCEWithLogitsLoss().to(device)
def train(model, loader, optimizer, criterion, scheduler): model.train() epoch_loss = 0 for text, label in loader: text, label = text.to(device), label.to(device) predictions = model(text) loss = criterion(predictions, label) optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() scheduler.step()
epoch_loss += loss.item() return epoch_loss / len(loader)
def evaluate(model, loader, criterion): model.eval() epoch_loss = 0 correct, total = 0, 0 with torch.no_grad(): for text, label in loader: text, label = text.to(device), label.to(device) predictions = model(text)
loss = criterion(predictions, label) epoch_loss += loss.item() preds = torch.sigmoid(predictions) > 0.5 correct += (preds == label).sum().item() total += label.size(0) return epoch_loss / len(loader), correct / total
train_losses, test_losses, test_accs = [], [], []
for epoch in range(epochs): train_loss = train(model, train_loader, optimizer, criterion, scheduler) test_loss, test_acc = evaluate(model, test_loader, criterion) train_losses.append(train_loss) test_losses.append(test_loss) test_accs.append(test_acc) print(f'Epoch: {epoch + 1:02}, Train Loss: {train_loss:.3f}, Test Loss: {test_loss:.3f}, Test Acc: {test_acc:.2%}')
torch.save(model.state_dict(), "model.pth")
torch.save(vocab, "vocab.pth")
plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) plt.plot(train_losses, label='Train Loss') plt.plot(test_losses, label='Test Loss') plt.legend() plt.title('Loss Curve') plt.subplot(1, 2, 2) plt.plot(test_accs, label='Test Accuracy') plt.legend() plt.title('Accuracy Curve') plt.tight_layout() plt.show()
|