CycleGAN 实现莫奈风格画作转化为真实照片

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
使用 CycleGAN 实现莫奈风格图像转化为真实照片风格图片
在同一根目录下需要:
datasets/monet2photo/trainA 文件夹存放莫奈风格画像
datasets/monet2photo/trainB 文件夹存放真实风景图片
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import ImageFolder
import os

# 设置参数
batch_size = 1
lr = 0.0002
epochs = 1000
input_channel_size = 3
output_channel_size = 3

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs("output_cyclegan", exist_ok=True)

# 数据预处理
transform = transforms.Compose([
transforms.Resize((256, 256)), # 统一图片大小,方便处理
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # RGB 图片归一化
])

# 加载数据集
dataset_A = ImageFolder(root="datasets/monet2photo/trainA", transform=transform) # 莫奈画像
dataset_B = ImageFolder(root="datasets/monet2photo/trainB", transform=transform) # 真实照片


dataloader_A = DataLoader(dataset_A, batch_size=batch_size, shuffle=True)
dataloader_B = DataLoader(dataset_B, batch_size=batch_size, shuffle=True)


# 残差块
class ResnetBlock(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv_block = nn.Sequential(
nn.ReflectionPad2d(1), # 反射填充,缓解填充带来的差异
nn.Conv2d(dim, dim, kernel_size=3, padding=0, bias=False),
nn.InstanceNorm2d(dim), # 实例归一化
nn.ReLU(True),
nn.ReflectionPad2d(1),
nn.Conv2d(dim, dim, kernel_size=3, padding=0, bias=False),
nn.InstanceNorm2d(dim)
)

def forward(self, x):
return x + self.conv_block(x)


# 生成器
class Generator(nn.Module):
def __init__(self, input_channel_size, output_channel_size):
super().__init__()
self.main = nn.Sequential(
nn.ReflectionPad2d(3),
nn.Conv2d(input_channel_size, 64, kernel_size=7, padding=0, bias=False), # (4,3,256,256)->(4,64,256,256) 感受野(7*7)
nn.InstanceNorm2d(64),
nn.ReLU(True),

nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),# (4,64,256,256)->(4,128,128,128) 感受野(9*9)
nn.InstanceNorm2d(128),
nn.ReLU(True),

nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),# (4,128,128,128)->(4,256,64,64) 感受野(13*13)
nn.InstanceNorm2d(256),
nn.ReLU(True),

ResnetBlock(256),
ResnetBlock(256),
ResnetBlock(256),
ResnetBlock(256), # (4,256,64,64)->(4,256,64,64) 感受野(13*13)

nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False),# (4,256,64,64)->(4,128,128,128) 感受野(17*17)
nn.InstanceNorm2d(128),
nn.ReLU(True),

nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False),# (4,128,128,128)->(4,64,256,256) 感受野(25*25)
nn.InstanceNorm2d(64),
nn.ReLU(True),

nn.ReflectionPad2d(3),
nn.Conv2d(64, output_channel_size, kernel_size=7, padding=0),# (4,64,128,128)->(4,3,256,256) 感受野(31*31)
nn.Tanh()
)

def forward(self, input):
return self.main(input)


# 判别器
class Discriminator(nn.Module):
def __init__(self, input_channel_size):
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(input_channel_size, 64, kernel_size=4, stride=2, padding=1), # (4,3,256,256)->(4,64,128,128)
nn.LeakyReLU(0.2, True),

nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False), # (4,64,128,128)->(4,128,64,64)
nn.InstanceNorm2d(128),
nn.LeakyReLU(0.2, True),

nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False), # (4,128,64,64)->(4,256,32,32)
nn.InstanceNorm2d(256),
nn.LeakyReLU(0.2, True),

nn.Conv2d(256, 1, kernel_size=4, stride=2, padding=1) # (4,256,32,32)->(4,1,16,16)
# 使用更为高级的 PatchGAN 判别器而不是普通的判别器设计,这样设计能让模型更加关注局部区域的真实程度,这正对应了图像风格转化的任务特性
)

def forward(self, input):
return self.model(input)


netG = Generator(input_channel_size, output_channel_size).to(device) # A->B
netF = Generator(output_channel_size, input_channel_size).to(device) # B->A
netD_A = Discriminator(input_channel_size).to(device) # 检验图像是否是真实的A
netD_B = Discriminator(output_channel_size).to(device) # 检验图像是否是真实的B

criterion_GAN = nn.MSELoss()
criterion_cycle = nn.L1Loss()

optimizer_GF = optim.Adam(list(netG.parameters()) + list(netF.parameters()), lr=lr, betas=(0.5, 0.999)) # 由于循环一致性的设计,需要将 G 和 F 两个模型绑定在一起联合优化,保证相同的优化速率和效果
optimizer_D_A = optim.Adam(netD_A.parameters(), lr=lr, betas=(0.5, 0.999))
optimizer_D_B = optim.Adam(netD_B.parameters(), lr=lr, betas=(0.5, 0.999))

# 训练循环
for epoch in range(epochs):
for i, ((real_A, _), (real_B, _)) in enumerate(zip(dataloader_A, dataloader_B)):
real_A = real_A.to(device)
real_B = real_B.to(device)

# 训练生成器
optimizer_GF.zero_grad()
# 生成转化之后的图像
fake_B = netG(real_A)
fake_A = netF(real_B)
valid_B = torch.ones_like(netD_B(fake_B))
valid_A = torch.ones_like(netD_A(fake_A))
# 计算损失
# 计算对抗性损失
loss_G_GAN = criterion_GAN(netD_B(fake_B), valid_B)
loss_F_GAN = criterion_GAN(netD_A(fake_A), valid_A)
# 计算循环一致性损失
recovered_A = netF(fake_B) # 将生成出的虚假图像 B 转化回去
recovered_B = netG(fake_A) # 将生成出的虚假图像 A 转化回去
loss_cycle_A = criterion_cycle(recovered_A, real_A)
loss_cycle_B = criterion_cycle(recovered_B, real_B)
total_cycle_loss = (loss_cycle_A + loss_cycle_B) * 10 # 10 是权重
# 计算总损失值
total_G_loss = loss_G_GAN + loss_F_GAN + total_cycle_loss
total_G_loss.backward()
optimizer_GF.step()


# 训练判别器
# 训练判别器 A
real_output_A = netD_A(real_A) # 来自真实的图像
fake_output_A = netD_A(fake_A.detach()) # 来自虚假的图像,细节阻断梯度传播,防止波及生成fake_A 的 netF
loss_D_real_A = criterion_GAN(real_output_A, torch.ones_like(real_output_A)) # 应接近于 1
loss_D_fake_A = criterion_GAN(fake_output_A, torch.zeros_like(fake_output_A)) # 应接近于 0
loss_D_A = 0.5 * (loss_D_real_A + loss_D_fake_A) # 0.5 代表取均值
loss_D_A.backward()
optimizer_D_A.step()
# 训练判别器 B
# 与 A 类似
real_output_B = netD_B(real_B)
fake_output_B = netD_B(fake_B.detach())
loss_D_real_B = criterion_GAN(real_output_B, torch.ones_like(real_output_B))
loss_D_fake_B = criterion_GAN(fake_output_B, torch.zeros_like(fake_output_B))
loss_D_B = 0.5 * (loss_D_real_B + loss_D_fake_B)
loss_D_B.backward()
optimizer_D_B.step()


if i % 100 == 0:
print(f"Epoch [{epoch + 1}/{epochs}] Batch {i} G_loss: {total_G_loss.item():.4f} D_A: {loss_D_A.item():.4f} D_B: {loss_D_B.item():.4f}")
# 保存生成器参数,方便加载使用
torch.save(netG.state_dict(), "generator_monet2real.pth") # monet->real 参数
torch.save(netF.state_dict(), "generator_real2monet.pth") # real->monet 参数
Contents
  1. 1. 代码
|