1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
| import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import torchvision.utils as vutils import os
batch_size = 128 lr = 0.0002 noise_dim = 100 epochs = 20 channel_size = 1 lambda_gp = 10 critic_iterations = 5
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") os.makedirs("output_wgan_gp", exist_ok=True)
transform = transforms.Compose([ transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])
dataset = datasets.ImageFolder(root='data/mnist_jpg', transform=transform) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
class Generator(nn.Module): """ 基于卷积层的生成器 和 DCGAN 相同 """ def __init__(self, noise_dim, channel_size): super().__init__() self.main = nn.Sequential( nn.ConvTranspose2d(noise_dim, 128, kernel_size=7, stride=1, padding=0), nn.BatchNorm2d(128), nn.ReLU(True), nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, channel_size, kernel_size=4, stride=2, padding=1), nn.Tanh() )
def forward(self, input): return self.main(input)
class Critic(nn.Module): """ 基于卷积层的判别器 和 DCGAN 相同 """ def __init__(self, channel_size): super().__init__() self.main = nn.Sequential( nn.Conv2d(channel_size, 64, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True) ) self.flatten = nn.Flatten() self.fc = nn.Linear(128 * 7 * 7, 1)
def forward(self, input): x = self.main(input) x = self.flatten(x) return self.fc(x)
def compute_gradient_penalty(critic, real_samples, fake_samples): """ 计算梯度惩罚 """ alpha = torch.rand(real_samples.size(0), 1, 1, 1, device=device) interpolates = (alpha * real_samples + (1 - alpha) * fake_samples).requires_grad_(True)
critic_interpolates = critic(interpolates)
gradients = torch.autograd.grad(outputs=critic_interpolates, inputs=interpolates, grad_outputs=torch.ones_like(critic_interpolates), create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() return gradient_penalty
netG = Generator(noise_dim, channel_size).to(device) netC = Critic(channel_size).to(device)
optimizerC = optim.Adam(netC.parameters(), lr=lr, betas=(0.5, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(0.5, 0.999))
for epoch in range(epochs): for i, (data, _) in enumerate(dataloader): real_imgs = data.to(device) batch_size = real_imgs.size(0)
for _ in range(critic_iterations): netC.zero_grad() noise = torch.randn(batch_size, noise_dim, 1, 1, device=device) fake_imgs = netG(noise)
lossC_real = -netC(real_imgs).mean() + netC(fake_imgs.detach()).mean() gradient_penalty = compute_gradient_penalty(netC, real_imgs, fake_imgs.detach()) lossC = lossC_real + lambda_gp * gradient_penalty
lossC.backward() optimizerC.step()
netG.zero_grad() fake_imgs = netG(noise)
lossG = -netC(fake_imgs).mean() lossG.backward() optimizerG.step()
if i % 100 == 0: print(f"Epoch [{epoch + 1}/{epochs}] Batch {i}/{len(dataloader)} Loss_C: {lossC.item():.4f} Loss_G: {lossG.item():.4f}")
with torch.no_grad(): fixed_noise = torch.randn(16, noise_dim, 1, 1, device=device) fake = netG(fixed_noise) vutils.save_image(fake, f"output_wgan_gp/fake_samples_epoch_{epoch + 1}.png", normalize=True)
|